Hall Ticket Number:

Code No. : 14415 N/O

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (ECE: CBCS) IV-Semester Main & Backlog Examinations, May-2019

Signal Analysis & Transform Techniques

Time: 3 hours

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Max. Marks: 60

Q.No.	Stem of the question	Μ	L	CO	PO
	Part-A $(10 \times 2 = 20 \text{ Marks})$				
1.	Define half wave symmetry with an example.	2	1	1	1
2.	Why the mean square error criterion and not the average error criterion is chosen for minimizing the error over an interval.	2	2	3	1
3.	If the Fourier Transform (FT) of x (t) is X(ω), show that FT of $\frac{dx(t)}{dt} = j\omega X(\omega)$.	2	3	1	1,2
4	State Delers Wiener eriterie?		1	1	1
4.	State Paley-Wiener criteria?	2	1	1	1
5.	State sampling theorem for low pass signals.			2	1
6.	Find the Inverse LT of $X(S) = \frac{1}{(S+1)(S+2)}$ when ROC: Re(s) > -1.	2	2		1,2
7.	Write the expression for DTFT and IDTFT.		1	4	1
8.	If X (Z) =2+3 z^{-1} +4 z^{-2} , find the initial and final values of the corresponding sequence x (n).	2	3	4	1,2
9.	Find the convolution of $x(n) * \delta(n-2)$, where x (n) is given as $x(n) = \delta(n+2) + 2\delta(n) + 3\delta(n-2)$.	2	4	5	1,2
10.	Write the properties of auto correlation function.	2	1	5	1
	Part-B ($5 \times 8 = 40$ Marks)	nul			
11. a)	Discuss the signal approximation using mutually orthogonal signal functions.	4	2	3	1
b)	Find the Fourier series representation of the signal $x(t) = e^{-t}$ shown in Fig.1. Also sketch the magnitude and phase spectra.	4	4	1	1,2
	$x(t) \uparrow e^{-t}$				
	MMMM				
	-5 -4 -3 -2 -1 0 1 2 3 4 5 t				
	Fig.1				
	(t is in seconds)	-			

Contd...2

Code No. : 14415 N/	Cod	e N	0. :	14	415	5 N	0
---------------------	-----	-----	------	----	-----	-----	---

2. a)	Find the FT of the signal x (t) as shown in Fig. 2.	4	3	1	1,2
	FOUNDED VISION AND AND A STREET AND				
	x(t) A				
	-T/2 0 T/2 t->				
	Fig.2				
b)	Describe the ideal filter characteristics.	4	2	1	1
13. a)	Find the Nyquist rate for the following signals	4	2	2	1,2
	(i) $x(t) = \sin(2\pi \ 10^3 t) + \cos(\pi \ 10^4 t)$				
	(ii) $x(t) = \sin(1000\pi t) \sin(2000\pi t)$				
b)	Obtain Laplace Transform for the signals (i) $x(t) = e^{-4(t-3)}u(t-3)$. (ii) $x(t) = e^{-5t}\cos(3t)u(t)$	4	3	1	1,2
	An Wednet emicreel		4	~	1.0
14. a)	A Discrete Time system is described by $y(n) = e^{x(n)}$. Check weather the system satisfied the following properties or not : i) linearity ii) time invariance iii)	4	4	5	1,2
	stablity.				
b)	Given X(Z)	4	3	4	1,2
	$X(Z) = log_e \left[\frac{1}{1 - aZ^{-1}} \right] Z > a $				
16 -)	Find the inverse Z transform. Determine the convolution of $u_1(t) = u(t + 1)$ and $u_2(t) = u(t - 2)$ where	4	1	5	1,2
15. a)	Determine the convolution of $x_1(t) = u(t+1)$ and $x_2(t) = u(t-2)$ where $u(t)$ is a unit step function.	T	Ŧ	5	2,1
1	Find the outer completion function of the square pulse of amplitude A and duration	4	2	5	1.2
b)	Find the autocorrelation function of the square pulse of amplitude A and duration 0 to T.	4	2	5	1,2
16. a)	Explain the basic operations that will be performed on signals.	4	1	1	1
b)		4	2	1	1
	and phase spectrum for same.				
17.	Answer any <i>two</i> of the following:				
a)	State and prove the initial and final value theorems in Laplace transform.	4	1	1	1,2
b)	Find the Z-Transform $X(Z)$ and sketch the pole-zero with ROC	4	3	4	1,2
	$x(n) = \left(\frac{1}{3}\right)^{n} u(n) + \left(\frac{1}{2}\right)^{n} u(-n-1)$				
c)	Find the discrete time convolution of two given sequences $x(n) = \{1,2,1,2\}$ and	4	2	5	1,2
	h (n) = $\{1,2,3,4\}$			and an electron	- ,-

::2::

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	57
2	Knowledge on application and analysis (Level-3 & 4)	43
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	